
IFAC Journal of Systems and Control 8 (2019) 100051

Contents lists available at ScienceDirect

IFAC Journal of Systems and Control

journal homepage: www.elsevier.com/locate/ifacsc

PID control education for computer engineering students: A step to
bridge a cultural gap
Alberto Leva
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Ponzio 34/5, 20133 Milano, Italy

a r t i c l e i n f o

Article history:
Received 11 June 2018
Received in revised form 14 January 2019
Accepted 22 March 2019
Available online 8 April 2019

Keywords:
Control education
Computer engineering
PID control
Control of computing systems
Control-based computing systems design

a b s t r a c t

In computer engineering curricula, control is typically taught only to students willing to specialise
in embedded systems, real-time, and the like. Nowadays, this is becoming a problem. Control-based
techniques are gaining importance as a means to manage, optimise and also design computing systems.
In such a scenario, a lack of control culture is critical. However, a computer engineering curriculum may
not have the time and space to introduce a suitably tailored but ‘‘complete’’ course on the principles
of systems and control. This paper proposes a solution, based on a PID-centred activity, where the
occasion is taken to introduce and stress selected general ideas.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In a 2005 white paper titled ‘‘An architectural blueprint for
autonomic computing’’ (IBM, 2005), IBM defines ‘‘autonomic’’ as
‘‘pertaining to an on demand operating environment that re-
sponds automatically to problems, security threats, and system
failures’’. The same reference [page 2] says ‘‘Self-managing ca-
pabilities in a system accomplish their functions by taking an
appropriate action based on one or more situations that they
sense in the environment. The function of any autonomic capabil-
ity is a control loop that collects details from the system and acts
accordingly’’. This loop is formalised [ibidem, figure 4] as the so-
called MAPE(-K) one, the acronym standing for ‘‘Monitor, Analyse,
Plan, Execute (based on Knowledge)’’ — not so different from a
sequence like ‘‘read from sensor, compare to reference, compute
control, write to actuator’’ (based on knowledge of a model for
system, disturbances and requirements). Furthermore, ‘‘touch-
point autonomic managers’’ (MAPE-K loops with a ‘‘sensor’’ and
an ‘‘effector’’ touching the controlled system directly, like e.g. a
pressure or a flow loop in a plant) are managed by higher-level
‘‘orchestrating autonomic managers’’ that ‘‘configure’’ them, like
for example a central MPC could give set points to peripheral
PIDs, or a loop analyser could retune them. Indeed, the similarity
of Figure 2 in IBM (2005) to a hierarchical plant-wide control
system is quite impressing.

Given the above, it should be apparent that computer engi-
neering students have to study control, but quite surprisingly,
in practice this does not seem to be so apparent at all. Most

E-mail address: alberto.leva@polimi.it.

computer engineering students do not receive any control edu-
cation; and those who do, most often take their basic ‘‘systems
and control’’ course in a late semester of their BSc, and only if
interested in embedded systems, real time, and the like.

As such, many computer engineers need control culture to
manage and design their systems, but do not possess it. Present
technologies suffer heavily from this gap, as does part of the com-
puter engineering research as well (some evidence is given in the
following). In this paper, that builds on the preliminary one (Leva,
2013), the problem is analysed and a solution is proposed, by
addressing the research questions below.

RQ1 Do computer engineering students really need control edu-
cation independently of their specialisation?

RQ2 If so, what is the best pedagogical goal for them?
RQ3 If such a goal can be sketched, is there a means to turn it into

a didactic activity effective and compact enough for being
inserted in an existing curriculum with feasible effort?

2. Why any computer engineering student needs control edu-
cation

As discussed more extensively in the following Section 3, com-
puter engineering students either ignore the systems and control
theory, or are just taught that computers serve to build controls,
not that concepts like dynamics and feedback play a fundamental
role in the management and the design of computing systems.
The result is that when confronting a problem, even if this should
be immediately recognised as a control one, they try to identify
a set of cases deemed the most frequent ones, and based on

https://doi.org/10.1016/j.ifacsc.2019.100051
2468-6018/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ifacsc.2019.100051
http://www.elsevier.com/locate/ifacsc
http://www.elsevier.com/locate/ifacsc
mailto:alberto.leva@polimi.it
https://doi.org/10.1016/j.ifacsc.2019.100051

2 A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051

intuition on how to handle these, to ‘‘figure out’’ an algorithm.
For which some corner cases will then emerge, leading to another
algorithm. For which some further corner cases will then emerge,
leading to yet another algorithm. And so on, sometimes even with
corner cases re-emerging because solving new ones has broken
the solution for some of the older. The resulting mindset and
professional attitude may easily prove inadequate to confront the
complexity of many modern computing systems.

The reader legitimately suspecting that the last statements
are just a consequence of the partial and control-centric view-
point of the author, is invited to go through a nice recent paper
from the computer community, titled ‘‘The Linux scheduler: a
decade of wasted cores’’ (Lozi et al., 2016). The paper analyses
the Completely Fair Scheduler, spots several logical flaws (at least
some of which a model-based design would have avoided, the
author bears to add) and lists among their causes that ‘‘catering
to complexities of modern hardware, a simple scheduling policy
resulted in a very complex bug-prone implementation’’ [Section
7].

In this and other works from the computer community, the
perception appears that complexity has grown enough to require
a systemic approach. Still missing, however, is a general enough
conscience that the solution is to introduce control as a design
mindset, not to just take some pre-built algorithms and connect
them to a system without a model to reason upon. Besides
nice applications, as a consequence, the computer literature also
contains examples of how disastrous a distorted idea of control
can be. A few such cases, compatibly with the educational fo-
cus of this paper, are touched below to support our affirmative
answer to RQ1. The reader willing to further investigate can
start e.g. from the papers Abdelzaher, Stankovic, Lu, Zhang, and
Lu (2003) and Diao et al. (2005) – written respectively for the
control and the computer communities – or the books (Heller-
stein, Diao, Parekh, & Tilbury, 2004; Janert, 2013; Leva, Maggio,
Papadopoulos, & Terraneo, 2013) and their bibliographies.

2.1. Case 1 – a taxonomy on control for self-adaptive software

Intended takeaway: in the absence of system-theoretical edu-
cation, control ends up viewed as a bookshelf of algorithms rather
than a methodological corpus.

The survey (Patikirikorala, Colman, Han, & Wang, 2012) on
control engineering approaches for self-adaptive software dis-
cusses and classifies 161 papers, from 2001 till 2011. It excludes
papers not ‘‘utilising control-theoretical approaches’’, hence also
‘‘fuzzy logic, neural networks, case based-reasoning and rein-
forcement learning’’ [p. 35], thus focusing on ‘‘classical’’ control.
However it also excludes works on ‘‘hardware [...] or operating
system level management’’ [ibidem]. This is surprising: to give
just one example, the way a resource is allocated heavily depends
on the internals of the operating system. When dealing with
functional requirements (simplifying for brevity, what software
has to do), taking the lower layers of a system just as a matter of
fact is correct, but for non-functional requirements (how, e.g. how
fast, the software has to do its job) lower layers necessarily come
into play. If we were talking e.g. of process control, neglecting
such layers would sound more or less like positively refusing to
account for the dynamics of actuators—quite often, not a good
idea.

Somehow surprising are also the taxonomy axes, i.e., ‘‘target
system (application domain, performance variable, dimension),
control system (model, type, loop dimension, scheme) and vali-
dation (simulation, case study)’’ [Figure 1]. No evidence of how
the model structure is chosen, how that of the controller is
consequently selected (including whether or not an adaptive one
is worth the additional effort), and how the controller is tuned

— all symptoms of disregarding the importance of modelling to
structure a control strategy. And as for models, these are mostly
black-box [Table III], with the definitely aprioristic motivation
that ‘‘analytical’’ (we would say ‘‘physical’’ or ‘‘first-principle’’)
ones are ‘‘not available or significantly complex’’ [p. 36]. Finally,
the variety of control schemes in the classified papers is wide,
from PID to LQR, MPC and more [Table III], but the ideas of control
law and scheme are confused with one another — for example,
two items in Table III are ‘‘LQR’’ and ‘‘cascade’’.

Despite its undoubted value, the work seems a taxonomymore
of how algorithms were taken from a bookshelf and applied, than
of what the encountered control problems look like, hence of how
control schemes need structuring and tuning.

2.2. Case 2 – a combination of controllers

Intended takeaway: worse still, in the absence of the right
education ‘‘a control algorithm is just an algorithm’’, and there
is hardly any idea about how strongly it can impact the overall
system.

AdaptGuard (Heo & Abdelzaher, 2009) was proposed to ‘‘guard
systems from instability’’. The idea is that ‘‘adaptation loops’’ [the
authors’ term for feedback loops], ‘‘implicitly assume a model of
system behaviour that may be violated; [...] in the absence of an
a priori model of the adaptive software system, [AdaptGuard] has
to anticipate system instability, attribute it correctly to the right
runaway adaptation loop, and disconnect it, replacing it with
conservative but stable open-loop control until further notice’’.
A ‘‘violation’’ is detected by inferring system causality from I/O
measurements: dependency reversals among monitored variables
indicate that some feedback has changed sign, causing instability.

In control terms, AdaptGuard is a decentralised state-based
switching scheme. The reported examples work, but in the ab-
sence of a system-level stability analysis, which could be cum-
bersome even in the LTI case, the author bears to state that
working examples basically mean that the controlled systems are
tolerant indeed (which the authors somehow acknowledge by
saying that ‘‘open-loop actions are stable’’). Replacing a controller
with another one is not the same as replacing a generic algorithm
with ‘‘another one for the same purpose’’ like one could do e.g. for
sorting. But to understand this, one needs some control theory.

2.3. Case 3 – mutual misunderstanding

Intended takeaway: more in general, in the absence of sys-
tems and control education, the ideas of ‘‘dynamics’’ and ‘‘dy-
namic model’’ are easily misunderstood, so that discussing prop-
erly about systems with control is hardly possible.

The survey (Huebscher & McCann, 2008) on autonomic com-
puting focuses on ‘‘models’’ right from the title, but contains no
‘‘model’’ in the sense of a dynamic system drawn from hypotheses
on an object to synthesise a control law for it. Sentences like ‘‘The
model [not some variable] is updated through sensor data’’ [p.
7:11] denote not distinguishing systems and signals, which makes
it difficult to reason properly about feedback loops.

In this respect, it is illuminant to report and annotate a para-
graph in the conclusions [Section 8]. ‘‘State-flapping is a cross-
cutting concern for autonomic computing. This is where oscilla-
tion occurs between states or policies [i.e., an oscillating signal
is seen the same as a controller cycling among different laws]
that potentially diminishes the optimal operation of the element
that is being managed. [...] there are many techniques we can
borrow from other sciences (e.g., control theory etc.) that can help
with dampening and desensitising the adaptivity mechanisms.
However, we do not believe that the likes of control theory is a
panacea to solving all autonomic aspects as it is less able to deal

A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051 3

with systems that exhibit discrete or continuous behaviours or
states [unclear whether talking about variables or equations, and
whether ‘‘discrete’’ refers to time or value—very different theo-
retical settings] that can be time varying with less well-defined
inputs in an ever-changing systems environment’’.

Now, such foundations can produce excellent applications.
This is not under question. No community can claim any su-
periority. But apparently, the system/signal distinction, the role
of disturbances and uncertainty, and above all the need for a
unified formalism to describe all the elements of a control prob-
lem mathematically, are missing completely. Such cultural gaps
between the computer and the control communities cause a lot
of misunderstandings.

2.4. Case 4 – effects on an application

Intended takeaway: as a consequence, when coming to ap-
plications, in the absence of control culture one misses the con-
ceptual tools to isolate the phenomena of interest, tailor the
model complexity, and formulate consistent specifications on the
involved components.

The Linux thermal daemon (Intel Corporation) is a software
component to keep the temperature of a processor at a safe level
while software introduces a continuously and rapidly varying
disturbance by changing the power consumption. The problem
is structurally simple: no complicated architectures, no hard-
to-formalise requirements. Nonetheless, the daemon is made of
thousands of code lines, and the description itself of its strat-
egy (the only information one possesses for maintenance, in
the absence of a dynamic control model) is complex indeed.
In addition, the daemon uses different sensors and actuators,
accessed through operating system modules not designed for
control purposes, hence providing no timing guarantee.

Since the time scale of the controlled phenomenon is fast,
one should have made timing a requisite for any component
of the control system, instead of just taking the existent, and
attempting to exploit it by adding complexity to the software.
Quite expectedly, the result are temperature swings of tens of
degrees, often requiring the hardware protection to intervene
— to say nothing about what could happen if the maintainer
of some involved operating system module, who knows noth-
ing about its use in the daemon, decides to modify it. Just for
comparison, a solution based on a PI with override produces
excellent results with about 1/20 of the code, tight timing, clearly
interpretable parameters, and formal guarantees verified on the
real hardware (Leva, Terraneo, Giacomello, & Fornaciari, 2018).

2.5. Concluding remarks as for RQ1

In the computer community, basic systems and control the-
ory is often just neglected, or overlooked, or applied with poor
methodological attention. It is not a criticism. It is just recog-
nising a matter of fact. The reader can verify this through many
references other than the few above.

Also, especially in ‘‘adaptive’’ systems, the control theory is
viewed as an alternative to e.g. machine learning or heuristics,
not as a mindset to view problems. Since several computing-
related problems require significant skills to cast them into a
control paradigm, the conclusion is frequently that ‘‘the problem
is too complex’’ for control theory to be applied. Only in the last
years it has been recognised that ‘‘even for software systems that
are too complex for direct application of classical control theory,
the concepts and abstractions afforded by control theory can be
useful’’ (De Lemos et al., 2017).

Indeed, the main problem is the lack of a shared culture.
Control engineers should probably learn about computers more

than they do (material for another paper symmetric to this one)
but it is at least equally important that computer engineers learn
about control. The examples just seen indicate that this has
nothing to do with their specialisation, and also that the point is
not to learn procedures but to acquire a mindset. Therefore, the
answer to RQ1 is strongly affirmative. Any computer engineering
student needs educating about control with the right degree of
abstraction – i.e., in general and without delving in the technical
details of any application – and properly — i.e., by a systems and
control specialist. And the earlier this happens, the better.

3. Mainstream control education practice for computer engi-
neers

Before proceeding, an analysis of the present state of the art
is in order. In the apparent impossibility of reviewing all the
existing curricula, we consider here as an authoritative source the
ACM and the IEEE Computer Society curricula recommendations,
available online at ACM and IEEE Computer Society, respectively.

For brevity, we here examine only the joint ACM–IEEE cur-
riculum guidelines for undergraduate degree programs in com-
puter engineering (ACM curriculum). The executive summary
says ‘‘computer engineering is a discipline that embodies the
science and technology of design, construction, implementation,
and maintenance of software and hardware components of mod-
ern computing systems and computer-controlled equipment’’.
The ‘‘background’’ Section 2.1 mentions control when talking
about computer-controlled equipment, and embedded – possi-
bly control-targeted – applications. The ‘‘evolution of the field’’
Section 2.2 envisages ‘‘a re-integration with electrical engineer-
ing, as computer-based systems become dominant in areas such
as control systems and telecommunications’’. The ‘‘breadth of
knowledge’’ section 2.3.4 locates control systems in the ‘‘elec-
trical engineering related’’ coursework.

Coming to knowledge areas, those directly related to systems
and control are CE-ESY (Embedded systems, 40 core hours out
of 420 total) in unit CE-ESY-8 (Data acquisition, control, sensors,
actuators, 4 core hours) and CE-SGP (Signal processing, 30 core
hours) in units CE-SGP-6 through 8 (on signal processing – no
loop is closed – for a total of 26 core hours) and CE-SGP-11
(Control system theory and applications, no core hours).

Modelling and simulation is considered, but almost exclu-
sively for circuits and devices. For example, CE-CAE (Circuits
and electronic, 50 core hours) embodies the supplementary unit
CE-CAE-12 (Circuit modelling and simulation methods), CE-DIG
(Digital design, 50 core hours) has CE-DIG-2 (Relevant tools,
standards, and/or engineering constraints, 2 core hours) and CE-
SPE (Systems and project engineering, 35 core hours) has CE-
SPE-2 (analogous to CE-DIG-2, 3 core hours). More in general,
section 4.5 (‘‘the role of engineering tools’’) locates simulation
within ‘‘hardware design tools’’. Simulation-related topics are
also in CE-SRM (System resource management, 20 core hours) in
supplementary unit CE-SRM-7 (System performance evaluation).

For a more complete panorama, one could of course also ob-
serve typical/suggested study plans at university websites. We do
not enter such an analysis here because it would be too long, and
the choice of the universities inevitably arbitrary. While encour-
aging the reader to try his/her own, therefore, we just say that
going through several sites confirmed the impression gathered
from the recommendations above, and the others at ACM and
IEEE Computer Society. The conclusion is that with the present
practice, when computer engineering students receive systems
and control education, this is centred on using computers to
make controllers. Hardly any mention is made of computing
systems control—let alone of control-based computing systems
design. Moreover, taking control courses in late semesters further

4 A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051

strengthens the idea of a unidirectional computers-control rela-
tionship: first computers and then control, but only if interested
in embedded systems and the like; because computers serve for
control, not vice versa.

4. Which control pedagogy for computer engineers

We established that any computer engineering student needs
‘‘the core ideas of control’’, that current education practice can be
improved in this respect, and that ‘‘the earlier the better’’ (hence
in this work we concentrate on the undergraduate level). It is
now the time for RQ2, that can be split in two sub-questions.
First, do we need a specific pedagogy for computer engineer-
ing students, or introducing a ‘‘standard’’ basic control course,
maybe just suitably abridged, would suffice? In other words, are
computer engineering students somehow ‘‘special’’ – and in the
affirmative case, why – with respect e.g. to mechanical, electrical
and others? Second, based also on the considerations for the
previous sub-question, what are the core ideas to transmit?

4.1. Why computer engineering students are ‘‘special’’

The roots of the question are historical. When control became
a necessity in any engineering domain but the computer one, the
required mathematical theory was already there, and developing
a control engineering culture was quite straightforward. Nowa-
days, non-computer engineers get naturally acquainted to using
a dynamic system to model an object, simulating such a model
to aid design, setting up control if needed, and assessing the
whole thing. The technological evolution progressively brought
electronics and digital systems into play, adding tools and re-
quiring to extend the theory, but the ultimate foundations and
mindset are still the same.

For computer engineering, the story is different. The dawn
of computers and of the discrete-time systems theory more or
less coincide. As no established theory was ready for use, the
computer community developed their own theory and system
design mindset, which differ a lot from those of the control
community. Instead of using models made of equations, computer
engineers got to describe functional entities as algorithms and
data structures, or state machines and data paths. Instead of the
descriptive and possibly a-causal framework of dynamic systems,
they fundamentally adopted the causal and prescriptive one of
algorithms. The reader may object to this statement based e.g. on
the existence of temporal logic and model checking, and in some
sense he/she would be right. However these are advanced topics,
taught after the undergraduate level, still largely subject of re-
search, and – apologies for being tranchant – less familiar to the
average computer professional than dynamics and feedback are
to the control one.

In any case, the cultural divergence above – consolidated
across half a century – makes today’s computer engineering stu-
dents face a special difficulty. For the others, the concepts learnt
in the basic control course do find application in subsequent
ones, for example on process or motion control. There are text-
books on e.g. chemical plants or robotics, that are stuffed with
control. In one word, when they exit their basic control class, non-
computer engineering students encounter a reasonably control-
friendly world.

For computer engineering ones, this is not the case. Assuming
they receive systems and control theory education properly and
as early as possible, in the sequel of their studies they will mostly
see design practices involving no control in the sense we mean
here, and they will need to relate these practices to their control
culture autonomously. This is definitely a less friendly setting,
quite likely to make the students rapidly relapse into illiteracy

about control, or develop no self-defence against distorted control
ideas like those discussed above.

Summing up, as long as the complexity of computing sys-
tems allowed to design them without control in mind, teaching
control only to students willing to use computers to make con-
trols was fine, and so was for them a ‘‘standard’’ basic control
course. Nowadays this is not true anymore. As recognised by
several of the quoted works, the complexity of modern system
requires a mentality change. To induce this change we necessarily
have to start with students, and we must pay special attention
to help their control culture withstand the persistence of the
old mentality and co-exist with it. Clearly, this requires ad hoc
teaching.

4.2. Choosing the core ideas to transmit

To strengthen the students enough for the setting just
sketched, the ideas to teach must be as general as possible with
respect to any application, natural to grasp and to understand
firmly, and as mathematically light as possible, to be easily
retained and kept alive even when technical details fade away.

Clues for the choice come from the attitudes to promote or
prevent. Based on the cultural issues discussed in the previous
sections, a brief list of requirements – not exhaustive but enough
for our purposes – can be the following.

• When confronted with a (control) problem, the students
should avoid to first come up with a solution and only
afterwards possibly discuss its properties.

• They should understand the concept of ‘‘property’’ as some-
thing that can be checked formally on a model, before any
implementation. Besides for control, this will also help them
learn e.g. about temporal logic predicates later on in their
studies — and the author adds, when they have been writing
programs for so long that in the absence of prior modelling
culture, integrating formal design into their habits may not
be an easy task.

• They should avoid limiting discussions to ‘‘use cases’’, as
already noted.

• When the problem is to reach a goal, they should refrain
from seeking the ‘‘magic move’’ to get there in one step,
as this entails the extremely questionable assumption that
if the goal is missed and another move is required, aiming
constantly at the goal will result in the shortest path.

Also, given the students’ tendency to jump directly to the
algorithm, the peculiarities of control in computers should be
discussed with extreme care, and not at the beginning of the
activity. The risk is that instead of clarifying the scenario as
would happen with a more educated audience, such discussions
conversely induce the idea that control concepts (not the way
they are applied, notice) need ‘‘customising’’ for computing sys-
tems, which is exactly the opposite of the educational goal to be
attained.

At the Politecnico di Milano, the author teaches a course titled
‘‘Fundamentals of Automatic Control’’ to sophomore students in
computer engineering. This is not a standard situation at all. The
course has 65 h of lecture, 35 of classroom practice, and two
experimental laboratory sessions of 3 h each: far more than usual.
The lecture hours distribution for the course subjects is shown in
Fig. 1. The part devoted to PID is small, but the amount of hours
for general ‘‘control synthesis’’ explains this.

Despite its peculiarity, the course provides an interesting
probe. Several students show up some years later for a MSc thesis.
These are occasions to first see what they retained of the subject,
and then – while working together – observe how they apply

A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051 5

Fig. 1. Hours distribution in the ‘‘Fundamentals of Automatic Control’’ course.

control ideas, what are their strengths and weaknesses, and what
is felt as (and in fact turns out to be) ‘‘fundamental’’.

This experience, over more than 15 years, indicates that the
really important things are the general ideas of dynamics, feed-
back, set point tracking and disturbance rejection, (internal) sta-
bility, performance, and the relative indices. The last point is
particularly important because it allows to compare solutions
formally, which is inherently preferable to just using ‘‘represen-
tative’’ benchmarks.

Concentrating on the matter just evidenced is a good enough
basis, and limiting the scope almost exclusively to the discrete
time domain is feasible. More advanced concepts are surely nec-
essary e.g. for researchers willing to cooperate with control sci-
entists, but these can be quite easily learnt later on, if the basis
is solid.

All this said, the problem remains that in the typical computer
engineering curriculum, negotiating the necessary space can be
very difficult. Fortunately over the last years there is a growing
research interest for the subject, and therefore the argument that
‘‘education should eventually start following’’ may have some
appeal. In the rest of the paper we shall assume that some space is
available, and address the problem of making the most effective
use of this space according to the considerations above. And as
discussed in the next section, this is where PID control comes into
play.

5. Why centre the activity on PID control

We now come to RQ3. The motivations for centring the activity
on PID – actually, mostly PI – control, is twofold. On one hand,
it allows to introduce general ideas quite straightforwardly, as is
well known to any reader with expertise in control. On the other
hand, it fits a large number of problems that arise in computing
systems, and involve extremely simple models. We give some
details on this second aspect.

In the presentation of the keynote paper (Hägglund, 2012),
the author suggested that in modern systems, PIDs relate to the
overall control application like ants do to their colony. This can be
re-formulated, for the educational scope of this paper, by saying
that PIDs act locally and near to the physics of the controlled
system, while the quality of their operation appears at higher
levels of the control hierarchy. The reader may object that this
applies to any control hierarchy, not just to computing systems.
True, but computers have at least two relevant peculiarities.

First, in any domain but computing, there is a physically de-
fined level below which neither measurements are feasible, nor
actions possible. To give a deliberately extreme example, temper-
ature is governed by molecular motion, but one cannot think of
measuring and actuating at that scale. In computing systems, the
same is not so true. For example, service level agreements are
established on an average basis, such as a waiting time below

Fig. 2. A simple model fitting several computing-related problems.

100 ms for 99% of the requests to a server; however, not only
one can think of acting at the level of ‘‘molecules’’ – the individual
requests – but in several cases, this is exactly what one must do.

Second, outside computing, lower hierarchy levels generally
correspond to less arbitrary choices on measurement and actu-
ation. For example, in a ‘‘peripheral’’ pressure loop the choice
of sensor and actuator is mostly a matter of technology, and
there are established guidelines for it; on the contrary, ‘‘central’’
controls may deal with ‘‘product quality’’ or other management-
oriented indicators to be computed from measurements, and that
can be defined in conceptually different ways. Here too, in com-
puting systems, things are often not so clear. For example, mea-
suring a server’s throughput is influenced by the adopted time
interval, and indices like the residence time in a queue need
discussing right from their definition, if (as is frequently the case)
input and output rates vary continuously, so that the system is
never at steady state.

Fortunately, the computing domain also brings some good
news. A major one is that the deeper one digs into the system, the
simpler the dynamic models for the observed phenomena tend
to become. As such, great benefits come from endowing systems
with a hierarchically ‘‘low’’ layer of PI- or PID-based controls, to
mitigate the effects of exogenous disturbances on quite simple
dynamics. We now support the ideas above by analysing two
examples.

5.1. Integrator-based models

For the first example we consider the discrete-time system

y(k) = y(k−1)+µ (g(k − 1)u(k − 1) + d1(k − 1))+d2(k−1), (1)

where u(k) is the control signal, y(k) the controlled variable, g(k)
a multiplicative disturbance (also interpretable as a time-varying
gain), and d1(k), d2(k) two additive ones. Since g(k) can frequently
be viewed as a variable ‘‘efficiency’’, as discussed below, we
assume

0 < gmin ≤ g(k) ≤ 1 ∀k. (2)

The system (1), represented as block diagram in Fig. 2 can be
viewed at two levels of complexity. Assuming g(k) to be constant
– i.e. unitary, given the presence of µ – yields an LTI system,
while admitting a variable g(k), and interpreting this as a time-
varying gain, gives an LPV one. Some examples of the various
interpretations this system can be given, at both levels, are listed
below.

1. LTI — uniprocessor preemptive scheduling: g(k) = 1, d2(k) =

0, µ = 1.
The processor time y(k) accumulated by a task at the kth
intervention of a scheduler equals the time y(k − 1) accu-
mulated before that intervention, plus the time u(k − 1)
allotted by the scheduler, plus the effect d1(k − 1) of any
phenomenon making the actually used time to differ from
the allotted one, like the task yielding back the processor,
or the preemption interrupt undergoing a latency delay.

6 A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051

2. LTI — master–slave network clock synchronisation: g(k) = 1,
d2(k) = 0, µ = 1.
The error y(k) between the clock of each (‘‘slave’’) node in a
network and a master one at the kth synchronisation event
equals the error y(k−1) after the previous such event, plus
the integral d1(k − 1) of the slave-to-master clock skew
(i.e., the inverse of their normalised frequency difference)
over the time elapsed between the two events, minus a
correction u(k − 1) computed at the previous event.

3. LPV — batch data processing: d1(k) = 0, d2(k) = 0.
The amount y(k) of data processed by a batch task at the
kth intervention of a resource allocator equals the one y(k−
1) at the previous intervention, plus the data processed
between the two. This amount of data nominally equals
the inter-intervention period times a nominal resource-
to-processing-speed gain µ, times the allotted resource
amount u(k − 1). However the actually processed quantity
of data equals the nominal one above multiplied by the
time-varying ‘‘efficiency’’ g(k − 1). This efficiency, among
other effects, accounts for the fact that different data may
stress the allotted resources in a different and a priori
unpredictable manner.

4. LPV — queue-based services: d1(k) = 0.
The length y(k) of a queue at the kth intervention of a re-
source manager allotting computational power to its server
equals the length y(k−1) at the previous intervention plus
the amount d2(k − 1) of jobs arrived between the two,
minus the jobs processed in the same time span, which
equals the computational power u(k − 1) allotted at the
beginning of the span times a nominal gain µ representing
the maximum server speed (and negative as the server re-
moves jobs from the queue) multiplied by the time-varying
– or equivalently, data-dependent – efficiency g(k − 1).

As long as the control action is computed in the discrete time –
a hypothesis to which a first didactic activity on control can well
stick – the few examples above should convince that the equation
‘‘work done up to now equals work done up to the last step, plus
the work nominally accomplished by resources allotted at that
step times a possibly varying efficiency, plus the effect of additive
disturbances’’, conveniently re-phrased, fits a large number of
physically heterogeneous applications. Adopting this modelling
attitude, the methodological differences among those applications
reside in the presence or absence of disturbances, in the char-
acteristics of those disturbances as signals, and in the aspect of
the reference signal. Then there are also technological differences
owing to the nature of the involved objects, of course, but these
do not affect the modelling and control synthesis activity.

5.2. Low order asymptotically stable models

Sometimes the control action cannot be exerted directly on
the physical phenomenon to govern, but has to traverse some
management machinery. Our second example refers to the quite
frequent case in which a resource is requested to an allocator,
that enforces the request (if feasible) with some internal control,
hence some dynamics.

A notable example is shown in Fig. 3, where all the responses
come from models up to the second order and with at most one
zero. If the system input is the allotted resource and the output
an application performance metrics, the four responses in Fig. 3,
top to bottom, could be interpreted as follows.

A. The resource is acquired and exerts immediately its full
effect (that is therefore seen at the very next step).

B. The resource acts immediately but takes some steps to yield
its full effect (for example because a queue needs emptying).

Fig. 3. Example of step responses from dynamics suitable for PI/PID control, for
model interpretation.

C. The resource produces a transiently enhanced effect (this is
quite typical when the metrics is the speed toward a goal).

D. The resource requires some effort to be acquired and thus
initially reduces performance, like e.g. a new core that when
acquired has a cache with unknown content and thus ini-
tially makes a lot of cache misses.

Based on a vast experience and literature (Hellerstein et al.,
2004; Janert, 2013; Leva et al., 2013), in most computer-related
cases of practical interest, the core phenomena are described well
enough by an asymptotically stable model of very low (in general,
first or second) order. The aptitude of PI- or PID-based control
schemes to a vast set of cases is therefore quite apparent, whence
the opportunity of centring the activity on it.

6. Didactic activity

This section gives a sketch of the activity, to illustrate how
the ideas previously set forth can be applied. The instructor
who agrees with the overall picture, can easily introduce the
adaptations deemed convenient for his/her particular teaching
context.

In the sketch we suppose to start completely from scratch
if not for basic algebra, calculus and procedural programming,
which seems a reasonable outset. In such a situation, the ac-
tivity can span about 16 h. Teaching material, targeted to ap-
proximately 8 h of lectures and 8 of classroom practice, can be
downloaded at https://github.com/albertoleva/PID4CSE under a
Creative Commons licence; LATEX source files are included, so that
the interested teacher can easily adapt the material to his/her
needs, insert it in a larger course, and so forth.

Needless to say, the following treatise is based on the author’s
experience, thus no absolute truth is claimed, and if the presenta-
tion may seem a bit prescriptive, this is only for compactness. In
fact, the author has far more doubts than certainties: discussions,
criticisms and alternative proposals would be highly beneficial
and therefore appreciated. Table 1 summarises the activity struc-
ture, based on which a few unit-by-unit clues and caveats, plus
some general remarks, are given.

https://github.com/albertoleva/PID4CSE

A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051 7

Table 1
Outline of the activity; L stands for lecture, P for classroom practice. The mentioned software tools are discussed in Section 7.
Unit Hours L/P Content and expected outcome

1 1–2 L Know and use control terms correctly; understand the idea of state as a reason for a system
to react differently to the same input; be aware of the major lexical differences between the
computer and the control communities, but at the same time of the presence of many control
problems inside computing systems; understand clearly the motivations for the activity.

2 3–4 L Firmly grasp the general idea of feedback, independently of the mathematical form it can
take; be familiar with the main types of dynamic systems; specialising to the discrete time
(DT) LTI case, know about the state space and the transfer function representations, about
stability and how to check it, and about ‘‘hidden parts’’ due to cancellations.

3 5–6 P Practice with DT LTI systems and their evolution, relating the various representations to one
another; view feedback as a mechanism in nature; understand the meaning of hidden parts in
a system; start getting acquainted to block diagrams; familiarise with the wxMaxima tool
for symbolic computations.

4 7–8 L Study the response of simple systems to standard signals; see how many different responses
can come from a single model structure; learn to translate time domain requirements into
a desired aspect for some transfer function; get familiar with the control loop and its actors;
synthesise a controller by cancellation paying attention to all the implications; reason about
the system-theoretical view on a control loop as opposite – but necessarily related – to the
functional/algorithmic one.

5 9–10 P Practice with system responses and direct synthesis; introduce the PI law, both intuitively and
the control-theoretical way, with examples; abstracting from this experience, re-discuss the
algorithmic and the systemic view on a control loop and spot the possible pitfalls of the former
as for fully understanding its operation; familiarise with Scilab and OpenModelica.

6 11–12 L Introduce the PID law and discuss parameter tuning, both in the pure DT and the sampled
signals case; present some examples in the computer domain for both situations, reducing
continuous-time entities to the bare necessary; discuss windup and antiwindup; write and run
a complete PI algorithm in Modelica; give a PID algorithm to the students to examine as a
means for them to verify their comprehension.

7 13–14 P By using wxMaxima and OpenModelica, experiment with simulated PID loops; look at the
P, I and D actions and understand their role; concentrate on the second order case to illustrate
the main reasons why the PID law is so vastly applicable; experiment with variations on the
PI(D) algorithm (positional vs. incremental, different antiwindup methods) to appreciate the
importance of a knowledgeable and completely documented implementation.

8 15–16 P Present some case studies from past experience in the computer domain; show also some
cases (e.g., tight clock synchronisation) where a PID is not appropriate, and explain why;
give some preliminary ideas about using a PID in the context of a control structure (e.g., an
override structure for CPU thermal management); sketch out possible subjects for further
control-related studies.

6.1. Unit 1

Unit outline: prerequisites; definitions; terminology and first
examples; a minimal control taxonomy; introduction to dynamic
systems.

Defining terms is very important, as false friends are ubiqui-
tous. For example, in systems theory a ‘‘parameter’’ physically
characterises a system, and is not a variable. In computer en-
gineering ‘‘parameter’’ is understood as in ‘‘formal’’ and ‘‘actual
parameter’’ for a function — i.e., it is the computer-ese for ‘‘input’’.
References from the computer literature help make the students
aware of the ‘‘control in/for computers’’ research and technology
domain. Examples help as well but should positively be confined
to the same awareness purpose, or in a few minutes the class is
lost into irrelevant technological details.

The instructor should speak the language that the students
will encounter later on when learning/reading about self-adaptive
or autonomic systems and the like, and make this language choice
explicit. Contrary to other students, computer engineering ones
necessarily need to relate system-theoretical and algorithmic en-
tities, and as long as they can cast ideas into their mindset with-
out misinterpretations, explanations are facilitated. For example,
a helpful ‘‘control taxonomy’’ for them could sound like

Controller:

type = {modulating,logic}

timing = {continuous,discrete,

event_triggered}

connection_with_system = {open_loop,closed_loop}

disturbance_compensation = {present,absent}

6.2. Unit 2

Unit outline: benefits of feedback; dynamic systems and their
properties, specialised to the DT LTI case.

The students must clearly distinguish the computer and the
control sense of ‘‘loop’’. To appreciate the problem, after intro-
ducing feedback one can talk about the MAPE-K loop, then ask
the audience what the word ‘‘loop’’ in that formalism means,
and see how many understand the system-theoretical nature
of the concept instead of sticking to its meaning in program
flow control, i.e., a cyclically repeated set of operations. More in
general, care must be taken to counteract the risk of mixing up
feedback and iterative computations, as well as block and flow
diagrams.

As for dynamics, take care to call the state in as many ways
as possible like ‘‘present condition’’, ‘‘internal configuration’’, and
so on. This will help the students understand that the idea of
‘‘adaptiveness’’ as ‘‘the ability of a system to respond in differ-
ent manners to the same stimulus depending on some internal
condition’’ can sometimes (but not so infrequently, we may add)
be re-formulated simply as that system being dynamic.

On stability, a fast way to say just the necessary, is to analyse
the first order case and then view higher order systems as the
series/parallel of first order ones; the role of the poles is then
immediately evident. Systems with complex poles (not frequent
in computers) can be left as an exercise.

8 A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051

6.3. Unit 3

Unit outline: exercises on dynamic systems, their representa-
tions and their properties.

Through the various examples addressed, care should above all
be taken that the students understand the concept of structural
property (e.g., stability) as a means to draw general conclusions
on the behaviour of a system without any attempt to achieve ‘‘ex-
haustive’’ experimenting. Recall that in computer science ‘‘model
checking’’ refers to techniques to verify predicates on a system
(over-simplifying for brevity) and is normally extremely complex
and computationally intensive. The idea itself of ‘‘model’’ that
one needs for control is different from the mainstream computer
engineering mindset, and every occasion to deal with his issue
should be taken.

6.4. Unit 4

Unit outline: system responses; formalising requirements; the
control loop; direct synthesis.

A major goal is to show how many different ‘‘use case re-
sponses’’ can come from one model. This is very important, be-
cause in hardly any other place may the students get the idea
that a single object can produce so different behaviours by just
changing some of its parameters. As an example of the pos-
sible resulting damage, the author once had a very hard time
convincing (maybe) some non-newbie computer people that an
automated vehicle does not need ‘‘one controller per behaviour’’
– i.e., one for turning, one for accelerating, one for braking and
one for cruising (plus a supervisor deciding which one to activate,
needless to say, and possibly learning from experience) – but
just a direction and a speed control receiving the convenient set
points. Such attitudes need preventing as early as possible.

A second goal, once the idea of ‘‘simple, control-targeted
model’’ is grasped, is to show how requirements in the time
domain can be translated into a desired aspect of some trans-
fer function, and then (via direct synthesis) how a control law
can be obtained non-ambiguously from model and specifications
instead of being ‘‘figured out’’. Once again, in few other places
may the students see an algorithm arise from a dynamic model.
According to experience, at this point computer-related examples
are safe enough and help stimulate interest, while the necessary
formalisms are normally not critical (e.g., block diagrams are
self-explanatory enough).

6.5. Unit 5

Unit outline: exercises on system responses and direct syn-
thesis; the PI law, intuitively and formally.

The most important results to achieve here are first a firm
relationship between intuition and control theory, and then –
but not less important – the conscience that theory allows to
go beyond intuition. Once again, accepting the risk to become
boring, the author would like to stress that the students, outside
control courses, will frequently hear that ‘‘the model is the code’’,
and need to attribute to such statements the correct context and
validity limits.

6.6. Unit 6

Unit outline: parameter tuning; the PI law; the control algo-
rithm.

All the treatise refers to discrete-time control. However a
very important point is to distinguish pure DT cases (i.e., when
the process model is independent of the sampling time) from
sampled signals cases, where the same is not true. According to

experience this is a difficult subject but also a major source of
confusion when controllers are realised in computing systems.
Addressing the matter inevitably requires to bring into play a few
continuous-time entities, but limiting the scope to Euler-based
derivative approximation suffices. Other algorithm-related facts
are easier to grasp, with the notable exception of taking care
to record, from one step to the following, only the necessary
quantities. Stressing that the control algorithm itself is a dynamic
system, the above quantities being its state variables, normally
helps bridging the two views already mentioned several times.

6.7. Unit 7

Unit outline: exercises on tuning PI(D) controllers and run-
ning their algorithms.

The importance of tuning is obvious. Less obvious but equally
strong is that of coding, however. In computers there is no control
design environment like e.g. those for process control. One has
very frequently to write control code by hand, in various lan-
guages, and integrating with the code of the system hosting the
control (e.g., a server written in java). Notice that the network (a
primary source of information for students, especially for ‘‘code
snippets’’) is often a bad teacher, as for example it provides many
applications where not even antiwindup is in place; see Maggio
and Leva (2011) for a deeper discussion on this aspect. Also, the
students should become aware that nonlinear mechanisms like
antiwindup can be realised in different ways, which impact the
large signals operation of a system.

6.8. Unit 8

Unit outline: exercises on tuning PI(D) controllers and run-
ning their algorithms.

Besides showing the PI(D) applicability limits and carrying
out some further exercises, this last session should serve two
additional purposes. First, clarify that a controller is part of a
system, and quite often its improper setup might cause symptoms
visible ‘‘elsewhere’’. Second, make the students aware of further
issues – to mention one, robustness – to study. According again
to experience, it is a good idea to end the activity by asking the
students to formulate some problem of their own interest, and
possibly – especially if some computer engineering colleague is
willing to cooperate – make this a joint project.

6.9. Some general remarks

Although the organisation above is largely indicative, the pro-
posed activity should inherently be capable of addressing the
peculiar issues evidenced in Section 4.2. The students should at
least perceive the power and usefulness of not attempting to find
a solution without going through a formalisation (modelling) of
the problem, of not relying excessively on any set of use cases
(no matter how wide), of not seeking the ‘‘one-step’’ path to the
optimum, whatever it is, but rather letting feedback do its work,
and finally of assessing anything in the world of models, when
possible, and letting algorithms follow. The students should also
reasonably master basic PID control, in the SISO discrete time
case, also sampled signals, for low order asymptotically stable
or integrating processes. This is enough in many computing-
related cases. Finally, they should be able of detecting that a
problem is not tractable with the control tools they learnt, based
on the dynamic characteristics of that problem, for example as
stemming from process responses—an abstraction capability that
only control can teach, and is very precious in many situations.
For any detail that could not fit herein, the interested reader can
refer to the teaching material made available.

A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051 9

The basic activity here shown could be completed on one
side with standard advanced control courses, and on the other
side with shorter, specialised modules to be integrated in subse-
quent computer-centric course. Modules at present under con-
sideration concern task scheduling, memory allocation, shared
resource management, task migration, application progress con-
trol, synchronisation, adaptive queuing systems, performance-
or reliability-driven binding, and combined power/performance
/thermal management.

7. A possible suite of supporting software tools

Any control course needs software tools. Here we broadly
divide these into ‘‘in-class’’ and ‘‘off-class’’ ones. In-class tools
are used by the instructor during lectures. Some hours may be
devoted explicitly to the tools, but in general, just watching the
instructor use them is enough to start autonomous learning. The
most famous such tool is probably MATLAB (The Mathworks).

Off-class tools are meant for autonomous student use. Their
story goes from pioneering works like (Johansson, Gafvert, &
Astrom, 1998; Mansour & Schaufelberger, 1989) to modern, ef-
fective proposals such as Guzmán, Costa-Castello, Dormido, and
Berenguel (2016), open source applications for embedded-ready
hardware (Hoyo, Guzmán, Moreno, & Berenguel, 2015), or ‘‘learn-
ing modules’’ like in Guzmán, Åström, Dormido, Hägglund, and
Piguet (2006). Such tools are normally subject-specific (e.g., on
PID control), present a user interface beyond which the student
is not expected to look, and are built onto various platforms, up
to spreadsheets (Aliane, 2010). A good survey on this scenario
is (Rossiter et al., 2018), but a quite ubiquitous fact, is that the
students need some time to familiarise with the tool.

In this respect, the presented activity has two peculiar prob-
lems: time is severely limited, and we talk to computer engineer-
ing students — not control ones, whom the tools above are mostly
for. Hence devoting time to learn any tool is infeasible, and any
tool requiring a significantly nonzero prior knowledge of control
does not fit.

A solution might be to use only tools and languages that
computer students already know. This is good for coding (an
important task, as said) but not for designing and analysing a
system, in a view to also teaching the idea of employing the right
tool for the right purpose—another important and sometimes
overlooked educational goal.

Briefly, the set of tools should comprise both ‘‘computer’’ and
‘‘control’’ ones. For the former type, more or less any language
fits. For the latter, we jump to the author’s conclusions skipping
the story that led there. The suggested suite is composed of
Scilab (The Scilab Consortium), Maxima plus wxMaxima (Max-
ima; wxMaxima), and the Modelica (The Modelica Association)
translator OpenModelica (The OpenModelica Consortium).

Scilab is useful for defining and analysing dynamic systems,
and has an internal programming language suitable for writing
small simulators where the control code is replicated exactly and
also the controlled system needs representing as code. In Scilab
there is only programming (not modelling like in Modelica, for
instance), thus for computer engineering students the tool is easy
to master.

Maxima, with the wxMaxima frontend for a more comfortable
use, provides symbolic computation capabilities, about which – at
least in the author’s experience – many undergraduate students
often have simply no idea. Such a tool is useful to enforce the
concept that computations can be checked formally and guaran-
teed correct. The tool can also provide control code without any
mistake. For example, the direct synthesis of a controller can be
done with the script below, where first the reference-to-output
dynamics is prescribed, then a specific case is shown, and finally
asymptotic disturbance rejection is checked.

kill(all);

C : rhs(solve(c*P/(1+c*P)=To,c)[1]);

C1 : factor(subst([P=2/(z-0.5),To=0.2/(z-0.8)],C));

Gyd: factor(subst([P=2/(z-0.5),c=C1],P/(1+c*P)));

Modelica has here two roles. First, the Blocks package of the
Modelica Standard Library is suited to work with block diagrams.
Second and most important, the availability of a DAE solver capa-
ble of handling events relieves the modeller from the burden of
managing time. As a simple example, the model below represents
the round-robin scheduling of three periodic tasks with a given
workload; the keyword der stands for derivative with time, the
meaning of the symbol time is obvious.

model RR

parameter Real[:] periods = {1, 2.2, 0.7};

parameter Real[:] workloads = {0.2, 0.3, 0.1};

parameter Real quantum = 0.01;

final parameter Integer n = size(periods, 1);

Real cpu_times[n] (each start = 0);

Real last_act[n] (each start = 0);

Integer invoked (start = 1);

Boolean running[n] (each start=false);

Integer misses[n] (each start=0);

equation // *** PHYSICS ***
for i in 1:n loop

// Task runs if selected by scheduler and still has

// work to do in period, otherwise yields CPU

running[i] = (i == invoked

and cpu_times[i]<workloads[i]);

// Time accumulated if running

der(cpu_times[i]) = if running[i] then 1 else 0;

end for;

algorithm // *** CONTROL ***
// Round robin task selection at each quantum

// (we neglect context switching delay)

when sample(0.0, quantum) then

invoked := invoked + 1;

if invoked > n then

invoked := 1;

end if;

end when;

for i in 1:n loop

// Reset time counter at the end of the period, detect

// and count deadline misses (workload not completed

// when period ends)

when time - last_act[i] >= periods[i] then

if cpu_times[i]<workloads[i] then

misses[i]:=misses[i]+1;

end if;

last_act[i] := time;

reinit(cpu_times[i], 0.0);

end when;

end for;

end RR;

This short model clearly separates ‘‘physics’’ and ‘‘control’’, and
allows for a wide set of experiments and additions. There is much
more to Modelica than the couple of features just mentioned,
but these are enough to motivate its use — and for the curious
student, to possibly start a path toward a deeper understanding

10 A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051

Table 2
Data from the evaluation questionnaires for fundamentals of automatic control.

2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018

C S C S C S C S C S C S

Q1 3.28 3.16 3.35 3.20 3.26 3.22 3.48 3.24 3.23 3.24 3.02 3.25
Q2 3.23 3.00 2.89 2.95 3.03 2.99 3.23 3.02 2.89 3.02 2.93 3.05
Q3 3.53 2.95 3.34 3.00 3.44 3.03 3.63 3.04 3.38 3.06 3.37 3.08
Q4 3.18 3.04 3.24 3.06 3.27 3.09 3.47 3.11 3.11 3.11 3.02 3.13
Q5 3.62 2.98 3.56 3.08 3.66 3.10 3.82 3.12 3.61 3.11 3.53 3.13
Q6 3.55 3.12 3.57 3.12 3.67 3.14 3.77 3.16 3.60 3.15 3.53 3.17
Q7 3.14 3.10 3.12 3.19 3.33 3.23 3.56 3.27 3.45 3.27 3.45 3.31
Q8 3.50 3.01 3.41 3.06 3.51 3.08 3.70 3.10 3.46 3.09 3.39 3.11

C Average result for the course: individual answers are integers from 1 (worst) to 4 (best).
S Average result for all courses in the school.
Q1 Rate your interest in the contents of this course.
Q2 Was knowledge obtained from previous courses adequate to effectively attend this one?
Q3 Was the required effort consistent with the course credits?
Q4 Rate the quality of the didactic material.
Q5 Was the teaching activity motivating?
Q6 Rate the clarity of lectures.
Q7 Rate the effectiveness and usefulness of classroom practice hours.
Q8 Rate your overall satisfaction with this course.

of dynamic modelling. Also, as a further remark on the above
computer/control tools balance, though the matter does not fit
in this paper, one can couple a Modelica model to a controller
written in C.

The tools just listed are the same the author uses in Funda-
mentals of Automatic Control. According to years of experience,
computer engineering students do become capable of employing
them by observing the instructor in the class: the same can be
assumed to apply to the activity presented herein. Finally, all
the tools are free software, with apparent advantages in terms
of experience sharing and dissemination.

8. Evaluation of the proposed approach

The proposed activity and material is the result of a long
process. At present, an evaluation is only possible based on Fun-
damentals of Automatic Control, where the computer-targeted
approach that grounds the activity – integrated in the wider
context of the course – was first introduced in the academic
year 2015/2016. Figs. 4 and 5 report respectively the pass/fail
distribution and the score breakdown in the A–D range, three
years before and after the said introduction. Table 2 reports an
excerpt of the questionnaires that the students at the Politecnico
di Milano have to fill in at the end of each course.

The score data were taken at the first exam session. Sub-
sequent ones have smaller but more varying numerosities, and
tend to contain more students who attended the lectures in the
previous years, thus being less reliable for our purposes. Also, it
must be noted that in 2015/2016 the BSc course in telecommu-
nications engineering was merged into the computer engineering
one, causing a variation in the (sophomore) course population in
2016/2017.

Briefly, the reported results suggest that taking the approach
here proposed, does not significantly alter the students’ per-
ception of the subject, while the exam results show a visible
improvement. This, it is worth repeating, is however an evalu-
ation for the origin of the activity here proposed. It is the hope
of the author that the said activity and material, distilled from
the experience just summarised, can have an analogous beneficial
effect.

As for the reception of the proposal by computer engineering
colleagues, to date information comes from personal interactions
and there is no structured data yet for a systematic evaluation.
As a result of the said interactions the author was also invited
to give some tutorials on the subject, which is a further signal of
interest and positive attitude. All the gathered experience is now
contained in the proposed teaching material.

Fig. 4. Results in Fundamentals of Automatic Control — pass/fail.

Fig. 5. Results in Fundamentals of Automatic Control — score breakdown.

9. Conclusions and future work

We discussed an important educational issue for computer
engineering students, namely the necessity of learning the basics
of the systems and control theory. The analysis strongly recom-
mends that such an educational goal be addressed as early as
possible, and by control specialists in a strict coordination with
computer-centred colleagues.

As a result we devised and motivated a didactic activity, of
size hopefully compatible with being inserted in a computer
engineering curriculum and proposed to all the students. The
activity is centred on PID control, but with the underlying ra-
tionale to provide the students with firm and clear ideas about

A. Leva / IFAC Journal of Systems and Control 8 (2019) 100051 11

what control is, i.e., with a control culture. A possible suite of
supporting software tools was also proposed, and motivated.

If there is more room than envisaged herein, the activity
could be extended with subsequent modules addressing spe-
cific aspects, to be possibly connected to courses about software
engineering, operating systems and so on.

Material for the interested teacher is available under a Creative
Commons licence at https://github.com/albertoleva/PID4CSE, or
by contacting the author via e-mail. Future work will consist
in refining this material and the didactic approach as well, and
addressing the envisaged subsequent activities. The author hopes
in the first place that the ideas expressed herein, and the material
just mentioned, will be helpful to both the control and the com-
puter engineering communities, and then – more in perspective –
that all of this can stimulate discussions, experience sharing, and
cooperation.

Acknowledgements

The problems addressed herein are delicate in more than one
sense. In this difficult navigation the author received help and
wise suggestions from colleagues of both communities, to whom
he is indebted: V. Cortellessa, A. Filieri, C. Ghezzi, M. Maggio, A.V.
Papadopoulos, F. Terraneo, and many others. Particular gratitude
is due to computer engineering people, who helped by offering
an encouraging and open-minded attitude. We all appreciated
mutual constructive criticism and frank scientific dialectic as a
means to achieve cultural convergence and to grow together, and
I learnt a lot.

References

Abdelzaher, T., Stankovic, J., Lu, C., Zhang, R., & Lu, Y. (2003). Feedback
performance control in software services. IEEE Control Systems Magazine,
23(3), 74–90.

ACM curricula recommendations, http://www.acm.org/education/curricula-
recommendations.

ACM curriculum guidelines for undergraduate degree programs in computer
engineering, http://www.acm.org/binaries/content/assets/education/ce2016-
final-report.pdf.

Aliane, N. (2010). Spreadsheet-based interactive modules for control education.
Computer Applications in Engineering Education, 18(1), 166–174.

De Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., et al.
(2017). Software engineering for self-adaptive systems: research challenges
in the provision of assurances. In Lecture notes in computer science: vol. 9640,
Software engineering for self-adaptive systems III.

Diao, Y., Hellerstein, J., Parekh, S., Griffith, R., Kaiser, G., & Phung, D. (2005). A
control theory foundation for self-managing computing systems. IEEE Journal
on Selected Areas in Communications, 23(12), 2213–2222.

Guzmán, J., Åström, K., Dormido, S., Hägglund, T., & Piguet, Y. (2006). Interactive
learning modules for PID control. IFAC Proceedings Volumes, 39(6), 7–12.

Guzmán, J., Costa-Castello, R., Dormido, S., & Berenguel, M. (2016). An
interactivity-based methodology to support control education: how to teach
and learn using simple interactive tools [lecture notes]. IEEE Control Systems,
36(1), 63–76.

Hägglund, T. (2012). Signal filtering in PID control. In Proc. 2nd IFAC conference
on advances in PID control (pp. 1–10). Brescia, Italy.

Hellerstein, J., Diao, Y., Parekh, S., & Tilbury, D. (2004). Feedback control of
computing systems. New York, NY, USA: John Wiley & Sons.

Heo, J., & Abdelzaher, T. (2009). Adaptguard: guarding adaptive systems from
instability. In Proc. 6th international conference on autonomic computing (pp.
77–86). Barcelona, Spain.

Hoyo, A., Guzmán, J., Moreno, J., & Berenguel, M. (2015). Teaching control
engineering concepts using open source tools on a raspberry pi board.
IFAC-PapersOnLine, 48(29), 99–104.

Huebscher, M., & McCann, J. (2008). A survey of autonomic computing – degrees,
models, and applications. ACM Computing Surveys, 40(3), 7:1–7:28.

IBM (2005). An architectural blueprint for autonomic computing, IBM White
Paper.

IEEE Computer Society curricula recommendations, https://www.computer.org/
web/peb/curricula.

Intel Corporation, Linux thermal daemon, https://01.org/linux-thermal-daemon.
Janert, P. (2013). Feedback control for computer systems. Sebastopol, CA, USA:

O’Reilly Media.
Johansson, M., Gafvert, M., & Astrom, K. (1998). Interactive tools for education

in automatic control. IEEE Control Systems, 18(3), 33–40.
Leva, A. (2013). Teaching PID control to computer engineers: a step to fill a

cultural gap. In Proc. 3rd IFAC conference on advances in PID control. Gent,
Belgium.

Leva, A., Maggio, M., Papadopoulos, A., & Terraneo, F. (2013). Control-based
operating system design. London, UK: IET.

Leva, A., Terraneo, F., Giacomello, I., & Fornaciari, W. (2018). Event-
based power/performance-aware thermal management for high-density
microprocessors. IEEE Transactions on Control Systems Technology, 26(2),
535–550.

Lozi, J., Lepers, B., Funston, J., Gaud, F., Quéma, V., & Fedorova, A. (2016). The
linux scheduler: a decade of wasted cores. In Proc. 11th European conference
on computer systems (pp. 1–16). London, UK.

Maggio, M., & Leva, A. (2011). Teaching to write control code. IFAC Proceedings
Volumes, 44(1), 7292–7297.

Mansour, M., & Schaufelberger, W. (1989). Software and laboratory experiments
using computers in control education. IEEE Control Systems Magazine, 9(3),
19–24.

Maxima, A Computer Algebra System, http://maxima.sourceforge.net/
documentation.html.

Patikirikorala, T., Colman, A., Han, J., & Wang, L. (2012). A systematic survey
on the design of self-adaptive software systems using control engineering
approaches. In Proc. 2012 ICSE workshop on software engineering for adaptive
and self-managing systems (pp. 33–42). Zürich, Switzerland.

Rossiter, J., Pasik-Duncan, B., Dormido, S., Vlacic, L., Jones, B., & Murray, R.
(2018). A survey of good practice in control education. European Journal of
Engineering Education, 43(6), 801–823.

The Mathworks, MATLAB home page, https://www.mathworks.com/products/
matlab.html.

The Modelica Association, Modelica home page, https://www.modelica.org.
The OpenModelica Consortium, OpenModelica home page, https://openmodelica.

org.
The Scilab Consortium, Scilab home page, http://www.scilab.org.
wxMaxima, A Graphical Frontend to Maxima, https://sourceforge.net/projects/

wxmaxima.

https://github.com/albertoleva/PID4CSE
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb1
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb1
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb1
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb1
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb1
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/binaries/content/assets/education/ce2016-final-report.pdf
http://www.acm.org/binaries/content/assets/education/ce2016-final-report.pdf
http://www.acm.org/binaries/content/assets/education/ce2016-final-report.pdf
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb4
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb4
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb4
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb5
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb6
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb6
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb6
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb6
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb6
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb7
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb7
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb7
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb8
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb9
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb9
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb9
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb10
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb10
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb10
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb11
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb11
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb11
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb11
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb11
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb12
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb12
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb12
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb12
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb12
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb13
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb13
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb13
https://www.computer.org/web/peb/curricula
https://www.computer.org/web/peb/curricula
https://www.computer.org/web/peb/curricula
https://01.org/linux-thermal-daemon
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb17
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb17
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb17
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb18
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb18
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb18
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb19
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb19
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb19
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb19
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb19
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb20
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb20
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb20
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb21
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb22
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb22
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb22
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb22
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb22
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb23
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb23
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb23
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb24
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb24
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb24
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb24
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb24
http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/documentation.html
http://maxima.sourceforge.net/documentation.html
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb26
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb27
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb27
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb27
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb27
http://refhub.elsevier.com/S2468-6018(18)30083-X/sb27
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.modelica.org
https://openmodelica.org
https://openmodelica.org
https://openmodelica.org
http://www.scilab.org
https://sourceforge.net/projects/wxmaxima
https://sourceforge.net/projects/wxmaxima
https://sourceforge.net/projects/wxmaxima

	PID control education for computer engineering students: A step to bridge a cultural gap
	Introduction
	Why any computer engineering student needs control education
	Case 1 – a taxonomy on control for self-adaptive software
	Case 2 – a combination of controllers
	Case 3 – mutual misunderstanding
	Case 4 – effects on an application
	Concluding remarks as for RQ1

	Mainstream control education practice for computer engineers
	Which control pedagogy for computer engineers
	Why computer engineering students are ``special''
	Choosing the core ideas to transmit

	Why centre the activity on PID control
	Integrator-based models
	Low order asymptotically stable models

	Didactic activity
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6
	Unit 7
	Unit 8
	Some general remarks

	A possible suite of supporting software tools
	Evaluation of the proposed approach
	Conclusions and future work
	Acknowledgements
	References

